Главная » Отоплениe » Расчет тепла теплого пола для оптимизации работы системы отопления

Расчет тепла теплого пола для оптимизации работы системы отопления

Расчет тепла теплого пола производят с учетом теплопотерь через ограждающие конструкции и полезной площади комнат. Ошибки в расчетах влияют на работу системы, увеличивают энергозатраты и расходы на содержание дома. Погрешности обусловлены применением укрупненных показателей. Эффективность утепления и герметичность конструкций (фундамент, несущие стены, перекрытия, кровля, стеклопакеты, входные двери) гарантирует экономный расход энергоресурсов в системе водяного теплого пола.

Расчет тепла теплого пола для оптимизации работы системы отопления

Скрупулезный расчет проекта теплого пола повышает энергоэффективность всей системы отопления и снижает затраты на её обслуживание

Назначение и расчет тепла теплого пола

Низконапорный нагревательный контур способен оптимизировать радиаторное отопление или обеспечить равноценный обогрев дома и снизить энергозатраты.

Нагревательный элемент и теплоноситель являются конструктивными особенностями, по которым различают водяной и электрический теплые полы. Рассчитать мощность электрического теплого пола можно с помощью онлайн-калькуляторов, которые размещаются на профильных сервисах в интернете. В этой статье мы более подробно рассмотрим назначение и расчет мощности водяных теплых полов.

Таблица 1. Рекомендованная удельная мощность водяного теплого пола на единицу площади:

Теплоотдача системы отопления с использованием радиаторов и теплого пола

Тепло Q (Вт), которое вырабатывает 1 квадратный метр низконапорного водяного контура, составляет суммарный поток лучистой (≈ 4,9 Вт/м²) и конвективной (≈ 6,1 Вт/м²) энергии:

Q =

[ αл×(tпола − tок) + αк×(tпола − tвоздуха) ]× S, (Вт), где

αл и αк — лучистый и конвективный потоки энергии, Вт/м²;

tпола — температура напольного покрытия, °C;

tок — температура стен и потолка, °C;

tвоздуха — температура в помещении, °C;

S — полезная площадь контура, м².

Расчет тепла теплого пола для оптимизации работы системы отопления

Схема 1. Расчет теплого водяного пола

Пояснение к схемам 1 и 2 расчета теплого пола:

  • 1 — плита перекрытия;
  • 2 — утеплитель (пенополистирол);
  • 3 — стяжка (готовая сухая смесь или цементно-песчаный раствор);
  • 4 — труба;
  • 5 — компенсационная самоклеющаяся лента;
  • 6 — арматурный каркас или сетка (крепление);
  • 7 — подложка пол ламинат или слой клея под плитку;
  • 8 — чистовое напольное покрытие;
  • 9 — гидроизоляция;
  • 10 — стена.
  • а — шаг трубы (0,15 ÷0,3 м);
  • b — отступ от несущей стены (0,3 м);
  • с — толщина утеплителя (0,02÷0,1 м);
  • f — толщина арматурной сетки (0,04 ÷ 0,1м);
  • d — общая толщина стяжки (0,03 ÷0,07 м);
  • r, Dy — толщина стенки и внутренний диаметр трубы;
  • g — толщина стяжки над трубой (0,3 м);
  • k — толщина подложки или слоя плиточного клея (0, 005 ÷0,01 м);
  • h — толщина напольного покрытия (0,015 ÷ 0,025 м).

Расчет тепла теплого пола для оптимизации работы системы отопления

Схема 2. Устройство стяжки в системе водяного теплого пола

Расчет отопления теплых полов определяет теплопотребление жилого дома согласно нормативным документам о тепловой защите зданий и строительной теплотехнике:

Q = (αл + αк) × S ×(tпола − tвоздуха), (Вт);

tпола = Q/[(αл + αк) × S] + tвоздуха, (°C);

при S = 1м², tпола = Q/(αл + αк) + tвоздуха, (°C).

При нагреве температуры помещения на 1 градус, тепло от поверхности пола передается воздуху:

∆t = tпола − tвоздуха =1°C;

Q =(αл + αк) × S×∆t = (4,9 + 6,1) × 1× 1 = 11 (Вт).

Расчет тепла теплого пола для оптимизации работы системы отопления

Обустройство стяжки для водяного теплого пола

Идеальные условия, при которых теплоотдача водяного контура на одном квадратном метре теплого пола, для нагрева воздуха в комнате на 1°C составляет 11 Вт/м². Чем выше температура в помещении, тем быстрее прогреется комната и меньше расход энергии теплоносителя. Система теплых полов предпочтительна для того, чтобы отапливать жилые утепленные дома, с постоянным проживанием. Среднее допустимое значение теплопотерь 65 Вт/м².

Для расчета теплоотдачи теплого пола существуют специальные программы, которые можно найти на ресурсах в сети. Для прояснения вопроса предлагаем ознакомится с видео «Расчет теплоотдачи теплого пола».

Температура теплоносителя

Температура теплоносителя в контуре зависит от тепловой нагрузки, шага укладки, диаметра труб, толщины стяжки и материала напольного покрытия. Минимальные температурные значения в контуре принимают для паркетной доски и мелкоштучных изделий из дерева. Кафельная, метлахская, керамическая плитка, керамогранит, мрамор выдерживают максимально разрешенную температуру теплоносителя (55°C). Низконапорные схемы отопления, которые применяют на практике, имеют рабочий диапазон — 45/35°C.

Санитарные нормы определяют комфортный (26°C) и допустимый предел температур для ступни человека:

  • 28°C в жилых комнатах для постоянного пребывания;
  • 35°C по периметру несущих стен жилого дома;
  • 33°C для кухонных помещений, ванн и санитарных комнат.

Расчет тепла теплого пола для оптимизации работы системы отопления

Согласно санитарным нормам температура теплоносителя в ванной комнате должна быть 33 градуса

Основания теплого пола

Тип перекрытия влияет на материалы и выбор толщины слоев над и под трубой. Основа для теплых полов — цементные стяжки и настильные системы из полистирола или деревянных межтрубных досок. Алюминиевый профиль в реечных модулях служит как изоляция дерева от прямого контакта с нагревательным элементом и для крепежа труб.

 Описание процесса монтажа водяного теплого пола. Его достоинства и недостатки в отличии от других видов напольных отопительных систем. Выбор материалов. Видео-уроки.

Разводку труб контура на бетонных плитах перекрытия устраивают в теле бетонной стяжки. Объем материала и монтажные расчеты теплых полов определяют после предварительной разметки поверхности (гидравлическим или лазерным уровнем). План раскладки выполняют на бумаге (масштаб 1:50). От точности, с которой проводится вычисление, зависит расход материала и скорость выполнения работ.

Расчет тепла теплого пола для оптимизации работы системы отопления

В настильном варианте монтажа теплого пола в модульных плитах предусмотрены пазы для прокладки труб водяного пола

Очищенную и обработанную полимерной грунтовкой поверхность, заблаговременно выравнивают, по грунтам и первым этажам делают гидроизоляцию. Оклеивают стены по периметру демпферной лентой на высоту, которая уйдет под стяжку (с небольшим запасом). Теплоизоляционный материал с фольгированным основанием экранирует удельный тепловой поток вверх в заданном направлении. Теплопотеря через фольгу не превышает 5%.

Арматуру укладывают поверх утеплителя, каркас придает жесткость стяжке и позволяет достигнуть правильной фиксации шага. Трубный контур выкладывают, крепят, испытывают контур под давлением и заливают раствором стяжки.

Расчет тепла теплого пола для оптимизации работы системы отопления

Теплый водяной пол смонтирован с использованием специальных матов

Облегченные модульные системы применяют для деревянных конструкций (черновой пол или лаги), которые не обладают способностью к высоким статическим нагрузкам.

Расчеты труб для водяного теплого пола (длина, диаметр, шаг и способы укладки и трубы)

Ограниченная длина низконапорного отопительного контура связана эффектом «замкнутой петли», при котором потеря давления превышает 20 кПа (0,2 бара). Увеличение мощности насоса, в данном случае не выход — сопротивление будет возрастать пропорционально увеличению давления.

Расчет тепла теплого пола для оптимизации работы системы отопления

Теплые водяные полы лучше обустраивать в помещениях, где проживают постоянно, а не пользуются время от времени

Расчетная длина труб для теплого пола определяется по формуле:

L = (S/a×1,1) + 2c, (м), где

L — длина контура, м;

S — площадь, контура, м²;

a — шаг укладки, м;

1,1 — увеличение размера шага на изгиб (запас);

2c — длина подводящих труб от коллектора до контура, м.

Важно! Полезная площадь помещения учитывает площадь контура с добавлением половины шага трубы.

Расчет тепла теплого пола для оптимизации работы системы отопления

Схема обустройства теплого водяного пола в бетонной стяжке

Обогревательный контур прокладывают, отступив 0,3 м от стен. Учитывают открытую площадь пола, которая передает равномерный поток излучения. Специалисты не рекомендуют монтировать отопительный контур в местах расстановки мебели. Длительная статическая нагрузка может стать причиной деформации труб.

При большой площади помещения отопительный контур разбивают на сектора. Основные правила зонирования — соотношение длин сторон 1/2, обогрев площади одного сектора не более 30 м² и соблюдение одинаковых длины и диаметра для цепей одного коллектора.

Расчет тепла теплого пола для оптимизации работы системы отопления

Температура теплоносителя в контуре теплого пола зависит от тепловой нагрузки, шага укладки, диаметра труб, толщины стяжки и материала напольного покрытия

Таблица 2. Соотношение длин и диаметров труб контура:

Конструкция металлопластиковых труб для теплого водяного пола

В паспортных данных изделий указывают максимальную пропускную способность труб, на основании которой вычисляют линейное изменение давления. Оптимальное значение скорости теплоносителя в трубах водяного отопления 0,15 ÷ 1 м/с.

Таблица 3. Зависимость шага от площади и нагрузки сектора:

Варианты укладки труб водяного теплого пола

По периметру, ближе к наружной стене и возле оконных проемов, проходит подача контура. Шаг укладки в краевых зонах может быть меньше расстояний между трубами в центральной части комнаты. Подключение усилений краевой зоны необходимо для повышения мощности теплового потока.

Важно! Загиб труб на 90° в спиральной схеме подключения водяного теплого пола, снижает гидравлическое сопротивление меньше, в сравнении с укладкой петлями (змейкой).

В расчетах труб для водяного теплого пола используют диаметры 16, 20, 26, 32 мм.

Расчет тепла теплого пола для оптимизации работы системы отопления

Укладка труб водяного теплого пола по спиральной схеме снижает гидравлическое сопротивление

Для систем теплых водяных полов применяют гофрированный, нержавеющий стальной, медный, металлопластиковый, сшитый полиэтиленовый трубопровод. Гофрировать трубу для теплых полов стали относительно недавно для того, чтобы облегчить монтаж конструкции и сократить расход на поворотные увеличения длины.

Полипропиленовый трубопровод обладает большим радиусом изгиба, поэтому в системах теплых полов применяется редко.

Расчет тепла теплого пола для оптимизации работы системы отопления

Гофрированная труба из нержавеющей стали для обустройства водяного теплого пола

Напольные покрытия

Виды финишного напольного покрытия для теплых полов: наливная поверхность, линолеум, ламинат или паркет, кафель, керамическая и метлахская плитка, мрамор, гранит, базальт и керамогранит.

Деревянному напольному покрытию противопоказана постоянная влажность в помещении, поэтому его не используют в ванных комнатах с теплыми полами.

Таблица 4. Теплопроводность напольных покрытий:

Устройство водяного теплого пола в бетонной стяжке с финальным покрытием кафельной плиткой

Насосное оборудование в расчетах теплого пола

Снижение температуры теплоносителя позволяет достигнуть эффективной работы циркуляционных насосов.

Нагревательный контур теплых полов расположен горизонтальной плоскости и охватывает большую площадь. Сила, которую циркуляционный насос придает потоку, расходуется на преодоление линейных и местных сопротивлений. Расчет насоса для теплых полов зависит от диаметра, шероховатости трубы, фитингов и длины контура.

Расчет тепла теплого пола для оптимизации работы системы отопления

Схема подключения системы отопления с теплым водяным полом

Основной параметр расчета — производительность насоса в низконапорном контуре:

Н = (П×L + ΣК)/1000, (м), где

Н — напор циркуляционного насоса, м;

П — гидравлическая потеря на погонном метре длины (паспортные данные от производителя), паскаль/метр;

L — максимальная протяженность труб в контуре, м;

K — коэффициент запаса мощности на местные сопротивления.

К = К1 + К2 +К3, где

К1 — сопротивление на переходниках и тройниках, соединениях (1,2);

К2 — сопротивление на запорной арматуре (1,2);

К3 — сопротивление на смесительном узле в системе отопления (1,3).

Расчет тепла теплого пола для оптимизации работы системы отопления

Напорная характеристика циркуляционного насоса

Степень производительности, которой обладает циркуляционный насос, определяют по формуле:

G= Q/(1,16 ×∆t), (м³/час), где

Q — тепловая нагрузка отопительного контура (Вт);

1,16 — удельная теплоемкость воды (Втч/кгС);

∆t — теплосъем в системе (для низконапорных контуров 5 ÷ 10°С).

Расчет тепла теплого пола для оптимизации работы системы отопления

Коллекторный шкаф с подключенной системой теплого пола

Таблица 5. Зависимость мощности агрегата от площади отапливаемых помещений (для гидравлического расчета теплого пола):

Пример схемы разводки теплого водяного пола по секторам

Расчет стоимости теплых полов

Газовый котел и напольный гидравлический контур соединяет коллектор. Равномерный поток теплоносителя обеспечивает автоматическая регулировка, с помощью балансировочных и термостатических вентилей. Обратный клапан предохраняет насосно-смесительный блок.

Таблица 6. Элементы комплектации теплого пола:

Элементы комбинированной системы отопления

Хозяин дома может сделать расчет водяных теплых полов, своими руками смонтировать систему, если обладает достаточным запасом знаний в теплотехнике, гидравлике, материаловедении и опытом выполнения сантехнических работ. Масса положительных примеров из жизни вдохновляет. Однако, каждый должен носить «свой портфель», собственный дом — не плацдарм для экспериментов.